Amino Alcohol- (NPS-2143) and Quinazolinone-Derived Calcilytics (ATF936 and AXT914) Differentially Mitigate Excessive Signalling of Calcium-Sensing Receptor Mutants Causing Bartter Syndrome Type 5 and Autosomal Dominant Hypocalcemia
نویسندگان
چکیده
INTRODUCTION Activating calcium sensing receptor (CaSR) mutations cause autosomal dominant hypocalcemia (ADH) characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS) type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics) on activating CaSR mutants. METHODS All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o). To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914. RESULTS All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants. CONCLUSION The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations.
منابع مشابه
Gα11 mutation in mice causes hypocalcemia rectifiable by calcilytic therapy
Heterozygous germline gain-of-function mutations of G-protein subunit α11 (Gα11), a signaling partner for the calcium-sensing receptor (CaSR), result in autosomal dominant hypocalcemia type 2 (ADH2). ADH2 may cause symptomatic hypocalcemia with low circulating parathyroid hormone (PTH) concentrations. Effective therapies for ADH2 are currently not available, and a mouse model for ADH2 would hel...
متن کاملAutosomal dominant hypocalcemia with Bartter syndrome due to a novel activating mutation of calcium sensing receptor, Y829C
The calcium sensing receptor (CaSR) plays an important role in calcium homeostasis. Activating mutations of CaSR cause autosomal dominant hypocalcemia by affecting parathyroid hormone secretion in parathyroid gland and calcium resorption in kidney. They can also cause a type 5 Bartter syndrome by inhibiting the apical potassium channel in the thick ascending limb of the loop of Henle in the kid...
متن کاملDiseases associated with calcium-sensing receptor
The calcium-sensing receptor (CaSR) plays a pivotal role in systemic calcium metabolism by regulating parathyroid hormone secretion and urinary calcium excretion. The diseases caused by an abnormality of the CaSR are genetically determined or are more rarely acquired. The genetic diseases consist of hyper- or hypocalcemia disorders. Hypercalcaemia disorders are related to inactivating mutations...
متن کاملAutosomal Dominant Hypocalcemia (Hypoparathyroidism) Types 1 and 2
Extracellular calcium is essential for life and its concentration in the blood is maintained within a narrow range. This is achieved by a feedback loop that receives input from the calcium-sensing receptor (CASR), expressed on the surface of parathyroid cells. In response to low ionized calcium, the parathyroids increase secretion of parathyroid hormone (PTH) which increases serum calcium. The ...
متن کاملExcessive Signal Transduction of Gain-of-Function Variants of the Calcium-Sensing Receptor (CaSR) Are Associated with Increased ER to Cytosol Calcium Gradient
In humans, gain-of-function mutations of the calcium-sensing receptor (CASR) gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased ...
متن کامل